
E-ROA XML Specification.doc   Page 1 

 

 
E-Appeal 
Electronic Record on Appeal 
Phase 1 – Record On Appeal Transmission Specification 
An Information Exchange Package (IEP) 
 
Submitted to the Technical Advisory Council for review on August 4, 2006 

 

 
This document defines requirements for transmitting a Record on Appeal (ROA) composed of electronic 
documents using IBM MQSeries as the transport infrastructure within the Arizona Judicial Information 
Network (AJIN). 
 
The E-ROA XML (defined below) will be used to ‘contain’ the ROA metadata, the Index of Record (IOR) 
document, and all documents and document metadata comprising the record, or an alteration of the record.  
 
Since there is no limit on the number or size of documents which may need to be transmitted, this 
specification considers that multiple MQ message groups may be required to fully transmit the ROA. 
 
An MQ message group will always be used even when there is a single message and no segmentation is required 
or used. 
 
The first MQ message in each group will contain the E-ROA XML. For the first MQ message group, the second 
message in the group will contain the Index of Record document content. The following messages will each 
contain a single document unless that document is too large for a single message or the document is too 
large for the current message group. When a document is too large for a single MQ message, but not too 
large for the message group, the submitting application will segment the document into multiple MQ 
messages, utilizing the fewest MQ messages necessary to contain the entire document. When the document is 
too large for the current message group, then a new Submission/MQ message group will be initiated. If a 
document is too large to be transmitted by itself within a single MQ message group, then the document must 
be transmitted using other means (such as DVD-ROM, etc.) 
 
MQ will be permitted to apply arbitrary segmentation to facilitate efficient message transport. 
 
When documents are put to the queue, a commit will be issued after the successful put of each document. If 
a document has been segmented by the putting application, the commit will follow the successful put of the 
last document segment for the document. 
 



E-ROA XML Specification.doc   Page 2 

When messages are read from the queue, the message will not be permanently removed from the queue until all 
messages within the MQ Message group have been read, and successfully ‘fielded’. 
 
All MQ messages will be persistent. 
 
MQ Message Identity Context must refer to the original sending application (such as the ‘Assembler’). If 
the message originating application uses an agent application (such as an MQputter) to ‘put’ the message to 
MQ, then the Identity Context should not refer to the putting agent, but should instead identify the 
message originator. 
 
This specification complies with GJXDM naming conventions. Whenever possible, GJXDM element names were 
used.



E-ROA XML Specification.doc   Page 3 

The following chart illustrates the relationship between MQ and the E-ROA XML structure. 
 

 
 
A Submission Group is comprised of all the Submissions necessary to transmit the ROA transaction. Each 
Submission is handled by an MQ message group. The Message group contains logical MQ messages which may be 
broken into segments. Generally there will be one document (i.e. XML document, Index of Record document, 
Record on Appeal document, or Supplemental Item document) per logical message. MQ Logical Message 1 will 
contain the E-ROA XML document compliant with this specification. MQ Logical Message 4 will also contain an 
E-ROA XML document per this specification. MQ Logical Message 2 will contain the Index of Record document. 
There will only be one Index of Record document for the whole Submission group. 

Submission 
Group 

Submission 1 Submission 2 

MQ Message 
Group 1 

MQ Message 
Group 2 

MQ Logical 
Message  1 

MQ Logical 
Message  2 

MQ Logical 
Message  3 

MQ Logical 
Message  4 

MQ Logical 
Message  5 

MQ Logical 
Message  6 

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 



E-ROA XML Specification.doc   Page 4 

E-ROA XML Document Type Definition (DTD) 
 
The following Document Type Definition (DTD) expresses the transmission XML requirements defined further 
within this specification: 
 
<?xml version=’1.0’ encoding=’UTF-8’ ?> 
<!--copyright @ 2005, Arizona Supreme Court. All Rights Reserved. --> 
 
<!ELEMENT Submission (SubmissionInfo, IndexOfRecord, SupplementalItems?)> 
     <!ATTLIST Submission  type CDATA #FIXED ‘ROA’ 

version CDATA #FIXED ‘1.0’ 
status CDATA #REQUIRED  
xml:base CDATA #IMPLIED > 

 <!ELEMENT SubmissionInfo (SubmissionCourtName, SubmissionDateTime, SubmissionPersonName, 
SubmissionSeqNum)> 
 <!ELEMENT SubmissionCourtName (#PCDATA)> 
    <!ATTLIST SubmissionCourtName code CDATA #REQUIRED> 
 <!ELEMENT SubmissionDateTime (#PCDATA)> 
 <!—Use ISO 8601 format, i.e. ccyy-mm-ddThh:mm:ss[.ttt] --> 
 <!ELEMENT SubmissionPersonName (#PCDATA)> 
 <!ELEMENT SubmissionSeqNum (#PCDATA)> 
 <!ELEMENT IndexOfRecord (CaseNumber, CaseTitleText, AppellateCourtName, AppellateCaseNumber?, 
                             DocumentContent?, Transaction+)> 
  <!ATTLIST IndexOfRecord id ID #REQUIRED 
      version CDATA #REQUIRED 
      groupCount CDATA #REQUIRED 
      docCount CDATA #REQUIRED > 
 <!ELEMENT CaseNumber (#PCDATA)> 
   <!ATTLIST CaseNumber displayMask CDATA #IMPLIED > 
 <!ELEMENT CaseTitleText (#PCDATA)> 
 <!ELEMENT AppellateCourtName (#PCDATA)> 
   <!ATTLIST AppellateCourtName code CDATA #IMPLIED > 
 <!ELEMENT AppellateCaseNumber (#PCDATA)> 
 <!ELEMENT Transaction (IndexOfRecordDocument+)> 
   <!ATTLIST Transaction type CDATA #FIXED ‘ROA’ 
     id ID #REQUIRED  
     directive (FILE|AMEND-ADD|AMEND-REPLACE|AMEND-REMOVE|AMEND-INSERT) #REQUIRED 
     content  (COMPLETE|SEGMENTED) #REQUIRED > 
      <!ELEMENT IndexOfRecordDocument (DocumentIndexNumber, Document)> 
        <!ELEMENT DocumentIndexNumber (#PCDATA)> 



E-ROA XML Specification.doc   Page 5 

   <!ELEMENT Document (DocumentTypeText, DocumentSubtypeText?, DocumentTitleText, 
DocumentFiledDate, DocumentAbstractText?, DocumentCommentText?, 
DocumentSealedIndicator?, DocumentPartition+)> 

     <!ATTLIST Document id ID #REQUIRED> 
   <!ELEMENT DocumentTypeText (#PCDATA)> 
   <!ELEMENT DocumentSubtypeText (#PCDATA)> 
   <!ELEMENT DocumentTitleText (#PCDATA)> 
   <!ELEMENT DocumentFiledDate (#PCDATA)> 
    <!—Use ISO 8601 format, i.e. ccyy-mm-dd --> 
    <!ELEMENT DocumentAbstractText (#PCDATA)> 
    <!ELEMENT DocumentSealedIndicator (#PCDATA) > 
   <!ELEMENT DocumentPartition (DocumentFileName, DigestMethod?, DigestValue?, 
     DocumentPartitionNumber?, DocumentContent)> 
      <!ELEMENT DocumentFileName (#PCDATA)> 
    <!ELEMENT DigestMethod (#PCDATA)> 
      <!ATTLIST DigestMethod algorithm CDATA #REQUIRED> 
    <!ELEMENT DigestValue (base64)> 
      <!ELEMENT DocumentPartitionNumber (#PCDATA)> 
      <!ELEMENT DocumentContent EMPTY> 
        <!ATTLIST DocumentContent id ID #REQUIRED 
       mimeType CDATA #REQUIRED 
       size CDATA #IMPLIED 
       xmlns:xlink CDATA #FIXED ‘http://www.w3.org/1999/xlink’ 
       xlink:type CDATA #FIXED ‘simple’ 
       xlink:href CDATA #REQUIRED > 
 <!ELEMENT SupplementalItems (DocumentCommentText?, Document+)> 
    <!ATTLIST SupplementalItems  docCount CDATA #REQUIRED > 
     <!ELEMENT DocumentCommentText (#PCDATA)> 
 
 
 
 
 
 
 
 



E-ROA XML Specification.doc   Page 6 

Elements 
 
Submission is the root element of the E-Record on Appeal XML for the purpose of transmitting the record on 
appeal from a trial court to an appellate court or from one appellate court to a higher appellate court. In 
general, a Submission is a single tendering of an electronic filing to a court. In the context of a Record 
on Appeal filing, as related to this specification, a Submission is a single or partial Record on Appeal 
transmission. When all of the documents which comprise the Record On Appeal transaction are able to be 
transmitted in a single communication, then a Submission will hold the entire transaction. When this is not 
possible or practical due to limitations of the supporting hardware and software infrastructure, then a 
Submission may only contain a partial Record on Appeal transaction. 
 
Although the Submission may be received by the destination court, it may not be accepted for filing at that 
court. All Submissions are subject to inspection and review by the receiving court prior to determining 
acceptance or rejection. Upon acceptance, a Submission should be ‘filed’ at the appellate court. If not 
accepted, the Submission should be rejected. Submission review, followed by either acceptance or rejection, 
should be conducted in a timely manner. 
 
A Submission may carry a complete Record On Appeal for filing in an appellate court. A Submission may also 
carry a partial Record on Appeal which may supplement the record, or alter the record. Alteration of the 
record may include adding documents, removing documents, or substituting documents. 
 
A complete Record On Appeal from a trial court may contain many documents. Currently there are no limits on 
the number or the size of the documents contained in the record. As such, a complete Record On Appeal may 
exceed the transport capacity of the communication infrastructure (i.e. such as MQSeries). When not 
practical to transmit an entire Record on Appeal due to size and capacity limitations, the record, or an 
alteration to the record, may be transmitted in more than one Submission. When more than one Submission is 
used to transmit the record or a record alteration, then the element values for SubmissionCourtName, and 
CaseNumber, and the attribute value of the IndexOfRecord id attribute of all Submissions must match (i.e. 
contain equal values), and the SubmissionSeqNum should be used to properly sequence the Submissions. These 
related Submissions are referred to as a ‘group of Submissions’ (or just a ‘Submission group’). 
 
The Submission element has three (3) attributes: 
 
 type identifies the kind of Submission as ‘ROA’. If this attribute is present, it must have a 

value of ‘ROA’. If absent, is assumed to be ‘ROA’.  
 
 version identifies the version of the XML data definition as version 1.0. If this attribute is 

present, it must have a value of “1.0”. If absent, is assumed to be “1.0”. 
 
 status identifies the current state of the Submission. When the Submission XML is first created, 

the status should be “CREATED”. Immediately prior to tendering the Submission to the 



E-ROA XML Specification.doc   Page 7 

Transport (i.e. MQSeries), the status should be set to “SENT”. If an application sends a 
Submission immediately following the Submission creation, then the “CREATED” status need 
not be set. Where possible, upon successful delivery of the Submission to its 
destination, the Transport should set the status to “DELIVERED”. When the submission is 
retrieved from the Transport, the reader or fielder application should set the status to 
“RECEIVED”. Subsequent processing applications may define additional status values. Upon 
completion of final processing of the Submission, the status should be set to 
“COMPLETED”, unless the XML document is immediately destroyed. 

 
 xml:base identifies a base URL that will be applied to all relative XLINK URLs. The xml:base 

attribute is not applied to namespace URLs, or any URLs outside the root element. Note 
that the xml namespace need not be declared and is pre-bound to the URI 
http://www.w3/org/XML/1998/namespace. 

 
<!ELEMENT Submission (SubmissionInfo, IndexOfRecord, SupplementalItems?)> 
     <!ATTLIST Submission  type CDATA #FIXED “ROA” 

version CDATA #FIXED “1.0” 
status CDATA #REQUIRED 
xml:base CDATA #IMPLIED > 

 
  
SubmissionInfo holds additional elements related to the Submission.  
 
 <!ELEMENT SubmissionInfo (SubmissionCourtName, SubmissionDateTime, SubmissionPersonName, 
SubmissionSeqNum)> 
 
 
SubmissionCourtName identifies the court submitting the record on appeal transaction. Often the 
submitting court will be a trial court, but the SubmissionCourtName could be an appellate court, such as 
when a Petition for Review has been filed at the Supreme Court emanating from a case on appeal at the court 
of appeals. This element should be populated with the name of the court, such as “Mohave Superior Court”. 
 
The SubmissionCourtName element has a single attribute: 
 
 code identifies the submitting court using the standard ‘Court Code’ value as defined by the 

Arizona State Judicial system’s standard appellate case management system Appellamation. 
Specifically, the code attribute value must be a valid value from the ‘court_cd’ column 
of the ‘psi.acm_court’ table within the Appellamation ‘appellaproduction’ database. A 
valid value will not have its ‘disabled_usage_flg’ column value set to ‘Y’. 

 
 <!ELEMENT SubmissionCourtName (#PCDATA)> 



E-ROA XML Specification.doc   Page 8 

    <!ATTLIST SubmissionCourtName code CDATA #REQUIRED> 
 
 
SubmissionDateTime indicates the date and time that the Submission document (i.e. “E-ROA”, the XML 
conforming to this specification) was created. Must use ISO 8601 format. Must provide century, year, month, 
days, hour, minute and seconds components. The fractional seconds part is optional.  
 
 <!ELEMENT SubmissionDateTime (#PCDATA)> 
 <!—Use ISO 8601 format, i.e. ccyy-mm-ddThh:mm:ss[.ttt] --> 
 
 
SubmissionPersonName identifies the person that created the Submission document. 
 
 <!ELEMENT SubmissionPersonName (#PCDATA)> 
 
 
SubmissionSeqNum identifies the order in which the current Submission fits into a group of Submissions 
(i.e. a Submission group), when it is necessary to use multiple Submissions to send a Record on Appeal or a 
record alteration. If a single Submission is used to transmit the record or an alteration of the record, 
then SubmissionSeqNum should be “1”, otherwise SubmissionSeqNum should be an integer value which is one 
unit greater than the value of the SubmissionSeqNum of the Submission that immediately preceded it, with 
the first Submission of the group having a SubmissionSeqNum value of “1”. 
 
 <!ELEMENT SubmissionSeqNum (#PCDATA)> 
 
 
IndexOfRecord identifies a structure which holds the Index of Record ‘document content’ and all the 
documents contained within the record which are included in the Submission. The IndexOfRecord specifies the 
SubmissionCourtName case, by case number and title, and holds the Index of Record ‘document content’. The 
contents and format of the Index of Record document are largely set by Supreme Court Administrative Order 
99-75. DocumentContent for the IndexOfRecord must be provided if the SubmissionSeqNum is “1”, otherwise the 
IndexOfRecord DocumentContent element should be empty. If the IndexOfRecord contains multiple Transactions, 
then the IndexOfRecord DocumentContent should reflect the state of the record upon successful acceptance of 
all the Transactions contained within the IndexOfRecord (or all the IndexOfRecord elements within the 
Submission group).  
 
The IndexOfRecord contains four (4) attributes: 
 
 id uniquely identifies an IndexOfRecord. This attribute, in conjunction with 

SubmissionCourtName and CaseNumber, is used to identify Submissions which comprise an 
application segmented Record on Appeal filing (i.e. a Submission group). As such, the 



E-ROA XML Specification.doc   Page 9 

IndexOfRecord ID attribute value must be unique for the combination of 
SubmissionCourtName and CaseNumber, and constant across all Submissions within the group. 
This further constrains the values permitted for the ID attribute beyond those imposed by 
the XML 1.0 specification which requires that: “Values of type IDR must match the Name 
production. A name must not appear more than once in an XML document as a value of this 
type; i.e. ID values must uniquely identify elements which bear them.1”  

 
  To further clarify this uniqueness requirement, consider that multiple Submissions from a 

given SubmissionCourtName for a given CaseNumber may be transmitted. This can arise from 
multiple scenarios, such as: 

 
1. An initial Submission files a Record on Appeal, then later, a subsequent Submission 

alters the record (e.g. supplements the record). 
 
2. A given SubmissionCourtName case becomes the lineage predecessor of multiple appellate 

cases. When the SubmissionCourtName case is first appealed, a Submission will follow 
to file the Record on Appeal. When the second appellate case is filed, a Submission 
may also follow filing the Record on Appeal in the second appellate case.    

 
In each of these scenarios, the SubmissionCourtName and CaseNumber will be the same for 
both Submissions, but the IndexOfRecord id attribute must have a unique value for each of 
the separate submissions. If a unique value is not provided, then it may not be possible 
for the receiving application to be able to distinguish the group to which a Submission 
belongs. Note that ‘group’ as used here refers to a Submission group and should not be 
confused with an MQ message group. An MQ message group, when used with this 
specification, will identify all the MQ messages that comprise a single Submission.  

 
 version identifies the rendition of the Index of Record DocumentContent. With an initial filing 

of the Index of Record, it is expected that version would be “1”. For additional 
amendment Submissions, the version should be numerically increased. Only whole integer 
values should be used. 

 
 groupCount identifies the total number of Submissions in the Submission group. When a Record on 

Appeal is segmented across multiple Submissions, groupCount identifies the number of 
Submissions within the group that must be received to comprise the complete Record on 
Appeal (or record alteration). The SubmissionSeqNum of the last Submission within a 
Submission group should be equivalent to groupCount. 

 

                                                 
1 See “Extensible Markup Language (XML) 1.0, W3C Recommendation 10-February-1998”, Production [56]. 



E-ROA XML Specification.doc   Page 10 

 docCount identifies the total number of IndexOfRecordDocuments included in the Submission group. 
When a single Submission is used to FILE the Record on Appeal, docCount should be the 
number of IndexOfRecordDocument elements, and should equal the largest 
DocumentIndexNumber value. 

 
 <!ELEMENT IndexOfRecord (CaseNumber, CaseTitleText, AppellateCourtName, AppellateCaseNumber?, 
                             DocumentContent?, Transaction+)> 
  <!ATTLIST IndexOfRecord id ID #REQUIRED 
      version CDATA #REQUIRED 
      groupCount CDATA #REQUIRED 
      docCount CDATA #REQUIRED > 
 
 
CaseNumber specifies the designator number used by the trial court to identify the case. The value of the 
element should be its basic representation without the presence of readability characters. For example, the 
value should be “CR0200400100”, and not “CR-200400100”, or “CR-0200400100”, or “S-1400-CR-0200400100”. 
CaseNumber has a single attribute: 
 
 displayMask identifies the presentation that should be used when displaying the CaseNumber. The 

displayMask should use text patterns to define the presentation. The text pattern should 
consist of metacharacters which have special meaning.  

 
  These metacharacters are: 
 
   @   any character 
   #   a number (0 – 9) 
   all other characters represent themselves 
 
   
  displayMask example:  
 
   Using mask: @@-#####-#####  with: CR0200400100 
 
   Produces: CR-02004-00100 
 
 
 <!ELEMENT CaseNumber (#PCDATA)> 
   <!ATTLIST CaseNumber displayMask CDATA #IMPLIED > 
 
 
CaseTitleText is a short name for the SubmissionCourtName case identified by CaseNumber. 



E-ROA XML Specification.doc   Page 11 

 
 <!ELEMENT CaseTitleText (#PCDATA)> 
 
 
 
AppellateCourtName identifies the appellate court to which the Submission is directed.  
 
The AppellateCourtName element has a single attribute: 
 
 code identifies the receiving appellate court using the standard ‘Court Code’ value as defined 

by the Arizona State Judicial system’s standard appellate case management system 
Appellamation. Specifically, the code attribute value must be a valid value from the 
‘court_cd’ column of the ‘psi.acm_court’ table within the Appellamation 
‘appellaproduction’ database. A valid value will not have its ‘disabled_usage_flg’ column 
value set to ‘Y’. The code value must represent an appellate court (must have a value 
between 100 and 199 inclusive, for the ‘court_level_value’ column in ‘psi.acm_court’). 

 
 <!ELEMENT AppellateCourtName (#PCDATA)> 
   <!ATTLIST AppellateCourtName code CDATA #IMPLIED > 
 
 
AppellateCaseNumber identifies the appellate case to which the Submission is to be directed. In the 
circumstance of an initial Record on Appeal filing, this would be the appellate case created as a result of 
a notice of appeal emanating from the SubmissionCourtName case. Typically, the appellate case will have a 
lineage relationship with the SubmissionCourtName case, which will generally be the appellate cases’ 
predecessor. The AppellateCaseNumber element is optional. When not used, the receiving court has discretion 
to apply the transaction to any case at the appellate court which has a lineage relationship with the 
SubmissionCourtName case, or to establish a new lineage relationship to an existing case at the receiving 
appellate court, or to create a new appellate case with a lineage relationship. Use of this element is 
therefore recommended. If used, then the value must be the basic representation of the case number without 
readability characters or other qualifiers (e.g. subtype code). For example, the case number should be 
“CR040123” and not “CR-04-0123”, or “CR 04-123 PRPC”, or “1-CA-CR 04-0123 PRPC”. 
 
Even though AppellateCaseNumber is optional, if the Submission is part of a Submission group, then all 
Submissions within the group must have the same AppellateCaseNumber value. Therefore, if 
AppellateCaseNumber is populated for one of the Submissions within a group, then it must be populated for 
all Submissions within the group (and must be the same value). 
 
 <!ELEMENT AppellateCaseNumber (#PCDATA)> 
 
 



E-ROA XML Specification.doc   Page 12 

Transaction is used to specify the type of processing that should occur upon acceptance of a Submission or 
a group of Submissions. The Transaction element is nested within the IndexOfRecord element and contains the 
IndexOfRecordDocument element. For an IndexOfRecord, at least one Transaction must be defined, but more 
than one Transaction is also valid (depending upon the type of Transaction and/or the ordering of 
Transactions). If multiple Transactions are provided, they shall be processed in the order presented, and 
shall represent a single logical unit of work, being either committed or rolled back as a unit. Nesting 
Transactions within IndexOfRecord permits multiple Transactions to apply to a single IndexOfRecord 
DocumentContent which represents the successfully completed state of the Record on Appeal, following the 
application of all the Transactions. A single Document (identified by id) must not be transacted more than 
one time in a Submission or group of Submissions (e.g. a Document cannot be added, then subsequently 
removed). The Transaction element has four (4) attributes: 
 
 type identifies the nature of the Transaction. If this attribute is present, it must have a 

value of ‘ROA’. If absent, is assumed to be ‘ROA’.  
 
 id uniquely identifies the Transaction. When a Transaction is SEGMENTED across multiple 

Submissions within a group, the id attribute is used to identify the Transaction which 
began in a prior Submission, but not yet completed. Whenever possible, Transactions 
should be COMPLETE and not SEGMENTED. 

 
 directive identifies what is to be done by the Transaction. An enumerated list of values exists for 

directive, and only values from this list may be used: 
 
 FILE this Submission is attempting to file a complete Record on Appeal. Due to 

size and capacity limitations the entire contents of the Record on Appeal may 
not be able to be held by a single Submission. When this occurs, then a group 
of Submissions will be used to fulfill the FILE Transaction directive. When 
the FILE directive is used, then multiple Transaction elements within the 
IndexOfRecord are prohibited, and the Transaction directive for all 
Submissions in the group must be FILE. 

 
 AMEND-ADD this Submission is altering an existing Record on Appeal filing by appending 

additional Documents to the end of the listing. The DocumentIndexNumber 
values for the additional Documents provided must be logically consecutive to 
the DocumentIndexNumber of the previous last Document in the Index of Record. 
This consecutive DocumentIndexNumber requirement precludes the use of a 
Transaction directive of AMEND-INSERT or AMEND-REMOVE prior to an AMEND-ADD 
since these other directives will affect index numbering. The AMEND-ADD 
Transaction directive must not be used with any other AMEND-ADD Transaction 
directives for an IndexOfRecord, either within a single Submission or within 
a Submission group. 



E-ROA XML Specification.doc   Page 13 

 
 AMEND-REPLACE this Submission is altering an existing Record on Appeal filing by 

replacing a existing document within the record, by a new Document or a 
revision of an existing Document. The replaced Document retains the Index of 
Record index number of the replaced Document, however, the DocumentTitleText, 
DocumentAbstractText, and/or DocumentFiledDate may be changed (in addition to 
any other Document metadata). Since the identification of the Document to be 
replaced is by DocumentIndexNumber, the AMEND-REPLACE directive must not be 
preceded by any other Transaction elements with directives that can affect 
index numbering (i.e. AMEND-INSERT, AMEND-REMOVE), either within a single 
Submission or within a group of Submissions. When this Transaction directive 
is used, the Transaction is limited to a single IndexofRecordDocument. 

 
 AMEND-REMOVE this Submission is altering an existing Record on Appeal by removing an 

existing Document. The receiving system is not obligated (upon acceptance) to 
delete the Document from the Document Management System (DMS) or Case 
Management System (CMS), although such a procedure is recommended. The 
receiving system is required to renumber all the Documents contained in the 
record, beginning with the Document which immediately followed the removed 
Document. Since the identification of the Document to be removed is by 
DocumentIndexNumber, the AMEND-REMOVE directive must not be preceded by any 
other Transaction elements with directives that can affect index numbering 
(i.e. AMEND-INSERT), either within a single Submission or within a group of 
Submissions. When this Transaction directive is used, the 
IndexOfRecordDocument is limited to a single Document and DocumentContent 
should be absent or empty. 

 
 AMEND-INSERT this Submission is altering an existing Record on Appeal by inserting a 

new Document between two existing Documents. The receiving system is required 
to renumber all the Documents contained in the record, beginning with the 
Document which immediately follows the inserted Document. Since the 
identification of the Document to be inserted is by DocumentIndexNumber, the 
AMEND-INSERT directive must not be preceded by any other Transaction elements 
with directives that can affect index numbering (i.e. AMEND-REMOVE), either 
within a single Submission or within a group of Submissions. When this 
Transaction directive is used, the IndexOfRecordDocument is limited to a 
single Document. 

 
 



E-ROA XML Specification.doc   Page 14 

 content identifies whether the Submission contains all of the Documents and DocumentContent 
necessary to complete the Transaction, or if the Transaction has been partitioned across 
multiple Submissions. Only two values are supported: 

 
 COMPLETE the Submission contains all the necessary documents and data to perform the 

Transaction. Whenever possible, COMPLETE should be used. When COMPLETE is 
used, and the IndexOfRecord contains a single Transaction, then the 
IndexOfRecord groupCount must have a value of “1”. 

 
 SEGMENTED the Transaction is not fully contained within the Submission, and multiple 

Submissions have been employed to transmit the full transaction content. The 
use of SEGMENTED Transactions should be avoided whenever possible. However, 
when initially filing a very large Record On Appeal, it may be necessary to 
use a group of Submissions, thereby necessitating the use of SEGMENTED 
Transaction content.  

 
 <!ELEMENT Transaction (IndexOfRecordDocument+)> 
   <!ATTLIST Transaction type CDATA #FIXED “ROA” 
     id ID #REQUIRED 
     directive (FILE|AMEND-ADD|AMEND-REPLACE|AMEND-REMOVE|AMEND-INSERT) #REQUIRED 
     content  (COMPLETE|SEGMENTED) #REQUIRED > 
 
 
IndexOfRecordDocument identifies a Document and its Index number on the Index of Record. 
 
      <!ELEMENT IndexOfRecordDocument (DocumentIndexNumber, Document)> 
 
 
DocumentIndexNumber identifies the Document and the sequence number of the Document in the 
IndexOfRecord. Documents should be presented within the Transaction in ascending DocumentIndexNumber order. 
If the Submission is for an initial Record on Appeal filing (Transaction directive=FILE), then the first 
Document within the Submission (or the first Submission within a Submission group) must have a 
DocumentIndexNumber of “1” and each successive Document should have a DocumentIndexNumber one integer unit 
greater than the DocumentIndexNumber that immediately precedes it.  
  
        <!ELEMENT DocumentIndexNumber (#PCDATA)> 
 
 
Document identifies a document within the Index of Record. A Document may be partitioned into pieces 
(typically a page, as in a single page TIFF document). An optional DocumentCommentText may be associated 
with the Document. Document has a single attribute: 



E-ROA XML Specification.doc   Page 15 

 
  id uniquely identifies a Document. When Documents are obtained from an OnBase DMS, then id 

should be the OnBase Document Handle value preceded by an underscore character.  
 
 <!ELEMENT Document (DocumentTypeText, DocumentSubtypeText?, DocumentTitleText, 

DocumentFiledDate, DocumentAbstractText?, DocumentCommentText?, 
DocumentPartition+)> 

   <!ATTLIST Document id ID #REQUIRED> 
 
 
DocumentTypeText identifies the classification of the Document at the SubmissionCourtName.  
 
 <!ELEMENT DocumentTypeText (#PCDATA)> 
 
 
DocumentSubtypeText identifies a further sub classification of the Document at the SubmissionCourtName. 
This element need not be provided. 
 
 <!ELEMENT DocumentSubtypeText (#PCDATA)> 
 
 
DocumentTitleText identifies the GIVEN title of the document (emphasis from Administrative Order 99-75). 
The DocumentTitleText is the name or title of the Document as provided by the Document’s author or filer. 
On occasion, the DocumentTitleText may be the same as, or reflect the DocumentTypeText.   
 
 <!ELEMENT DocumentTitleText (#PCDATA)> 
 
 
DocumentFiledDate identifies the date of filing in the SubmissionCourtName. Filing is generally understood 
to be the act of accepting the document by the court and officially including it in the case. This is not 
the receipt date of the Document by the SubmissionCourtName.  
 
 <!ELEMENT DocumentFiledDate (#PCDATA)> 
    <!—Use ISO 8601 format, i.e. ccyy-mm-dd --> 
 
 
DocumentAbstractText is a statement which summaries the content of a Document. This element is optional. 
 
    <!ELEMENT DocumentAbstractText (#PCDATA)> 
 



E-ROA XML Specification.doc   Page 16 

DocumentSealedIndicator is a flag which identifies a document as sealed or not sealed. This element is 
optional. When not present, the document will be considered as not sealed. When used, and the document is 
to be considered as sealed, the value of the element should be “Yes”. All other values will be interpreted 
as not sealed. 
 
    <!ELEMENT DocumentSealedIndicator (#PCDATA) > 
 
 
DocumentPartition  identifies the portions into which a document’s contents are divided. Every 
Document must have at least one DocumentPartition. If a Document has only one DocumentPartition, then all 
of its content will be contained within the single partition. However, some documents are divided into many 
partitions that collectively make up the full document content. For example, some Document Management and 
Imaging systems, including OnBase, can internally store documents as an ordered collection of single pages. 
Each page represents a DocumentPartition. Extractor systems are free to combine multiple DocumentPartitions 
to form a single DocumentPartition. 
 
 <!ELEMENT DocumentPartition (DocumentFileName, DocumentPartitionNumber?, DocumentContent) > 
 
 
DocumentFilename identifies the name of the file containing DocumentPartition content (or the full 
document content if there is single partition) at the SubmissionCourtName. This DocumentFilename need not 
be used by the receiving court which is free to use any convention for naming any necessary files. This 
element exists to facilitate compatibility with legacy transport mechanisms.  
 
     <!ELEMENT DocumentFileName (#PCDATA)> 
 
 
DigestMethod identifies the algorithm used to produce the message digest for the document referenced 

by DocumentContent.  
 
    <!ELEMENT DigestMethod (#PCDATA)> 
      <!ATTLIST DigestMethod algorithm CDATA #REQUIRED> 
 
 
DigestValue the value, expressed in Base64 format, produced by applying the DigestMethod algorithm to 

the document content referenced by DocumentContent. This value, along with DigestMethod, 
can be used by the receiving application to verify the integrity of the document content 
in the external MQ messages. 

 
    <!ELEMENT DigestValue (base64)> 
 



E-ROA XML Specification.doc   Page 17 

 
DocumentPartitionNumber identifies the order in which pages/parts of a partitioned document should be 
sequenced. Some imaging and document management systems are capable of partitioning documents into an 
ordered series of single pages. Values for DocumentPartitionNumber should be integer values. When a 
Document has a single DocumentPartition, then the DocumentPartitionNumber value may be either “0” or “1” 
(the value of “1” is recommended, but the value “0” is permitted to facilitate compatibility with legacy 
transport mechanisms). When a Document contains multiple partitions, then the value of 
DocumentPartitionNumber should begin with “1” and increase by a single integer value for each successive 
partition. DocumentPartitions should be placed into the E-ROA document in ascending DocumentPartitionNumber 
order.  
 
     <!ELEMENT DocumentPartitionNumber (#PCDATA)> 
 
 
 
 
DocumentContent refers to the actual document; its visible content and any internal structures necessary 
to support the document. DocumentContent references all of the binary data (i.e. BLOB) that was contained 
in the DocumentFilename file at the SubmissionCourtName. The actual content is contained outside (i.e. 
external to) the e-ROA XML document and is referenced using XLINK.  
 
 id uniquely identifies DocumentContent.  
 
 mimeType specifies how the contents of the decoded PCDATA are to be interpreted (e.g., 

application/PDF). 
 
 size indicates the size, in bytes, of the referenced document content. 
 
 xmlns:xlink identifies the XLINK namespace and must be bound to the http://www.w3.org/1999/xlink 

namespace URI. 
 
 xlink:type identifies the XLINK element type as “simple”.  
 
 xlink:href identifies the location of the document content as a URI as defined in ‘IETF RFC 2396’ 

(see http://www.ietf.org/rfc/rfc2396.txt). The URI should reference the message which 
contains the document. This may be done by referencing the ‘Filename’ field of the AJIN 
MQ Message Header. 

 
 
      <!ATTLIST DocumentContent id ID #REQUIRED 
       mimeType CDATA #REQUIRED 



E-ROA XML Specification.doc   Page 18 

       size CDATA #IMPLIED 
       xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink” 
       xlink:type CDATA #FIXED “simple” 
       xlink:href CDATA #REQUIRED > 
 
 
SupplementalItems  identifies other Documents that are transmitted along with the Record on Appeal. 
This element is optional. The rules of the court permit documents, other than those contained within the 
Record on Appeal, to be transmitted to the appellate court along with the record, however, this occurs 
infrequently. Supplemental documents must be associated with the SubmissionCourtName case. Under rare 
circumstances, an appellate court may order documents from a SubmissionCourtName case that is not a lineage 
predecessor of the appellate case. If this should occur, SupplementalItems should not be used to supplement 
the record. A new Submission should be used which identifies the appropriate SubmissionCourtName case from 
which the supplemental documents originate.   
 
The action that the receiving court should take for any or all SupplementalItems is not defined. However, 
the DocumentCommentText element may be used to communicate processing instructions. 
 
SupplemetalItems has one attribute: 
 
 docCount identifies the total number of SupplementalItems included in the Submission group. 
 
 <!ELEMENT SupplementalItems (DocumentCommentText?, Document+)> 
    <!ATTLIST SupplementalItems  docCount CDATA #REQUIRED > 
 
 
 
DocumentCommentText identifies narrative text relevant to the document. When included within the 
SupplementalItems element, DocumentCommentText can be used to clarify the nature of or the reason for the 
inclusion of the supplemental documents, as well as any processing expectations, or other miscellaneous 
information. When included with the Document element, DocumentCommentText can be used to provide additional 
notations, handling instructions, etc. and should be treated as temporary information. 
 
     <!ELEMENT DocumentCommentText (#PCDATA)> 
 



E-ROA XML Specification.doc   Page 19 

Samples: 
 
A simple initial ROA Filing, fully contained within a single Submission, transmitting two documents: 
 
<?xml Version=1.0 encoding=”UTF-8” ?>  
!--copyright @ 2005, Arizona Supreme Court. All Rights Reserved. --> 
 
<!DOCTYPE E-ROA SYSTEM “e-ROA_submission.dtd”> 
<Submission type=”ROA” version=”1.0” status=”CREATED”> 
 <SubmissionInfo> 
  <SubmissonCourt code=”S-1300”>Yavapai Superior Court</SubmissionCourtName> 
  <SubmissionDateTime>2005-10-12T13:12:32.125</SubmissionDateTime> 
  <SubmissionPersonName>Jane K. Doe</SubmissionPersonName> 
  <SubmissionSeqNum>1</SubmissionSeqNum> 
 </SubmissionInfo> 

<IndexOfRecord id=”IOR1” version=”1” groupCount=”1” docCount=”2”>  
  <CaseNumber displayMask=”@@-##########”>CR0200400100</CaseNumber> 
  <CaseTitleText>State v Burns</CaseTitleText> 
  <AppellateCourtName code=”1 CA”>Court of Appeals Division One</AppellateCourtName> 
  <AppellateCaseNumber></AppellateCaseNumber> 
  <DocumentContent id=”IOR12345” mimeType=”application/pdf” size=”23477” 
xlink:href=”IndexofRecord.pdf” /> 
  <Transaction id=”Txn1” directive=”FILE” content=”COMPLETE”> 
      <IndexOfRecordDocument> 
         <DocumentIndexNumber>1</DocumentIndexNumber> 
        <Document id=”_12345”> 
           <DocumentTypeText>Rule 32 Petition</DocumentTypeText> 
           <DocumentSubtypeText></DocumentSubtypeText> 
           <DocumentTitleText>PETITION FOR POST CONVICTION RELIEF</DocumentTitleText> 
           <DocumentFiledDate>2002-04-01</DocumentFiledDate> 
    <DocumentAbstractText>Petitioner’s Rule 32 Petition for Post Conviction 
Relief</DocumentAbstractText> 
           <DocumentPartition> 
      <DocumentFileName>Rule32Petitions.pdf</DocumentFileName> 

                 <DigestMethod algorithm=http://www.w3.org/2000/09/xmldsig#sha1 /> 
                 <DigestValue>j61wx3rvEPO0vKtMup4NbeVu8nk=</DigestValue> 

      <DocumentPartitionNumber>1</DocumentPartitionNumber> 
      <DocumentContent id=”DC0001”  
                              mimeType=”application/pdf” size=”450945” 
                              xlink:href=”12345.pdf”</DocumentContent> 
           </DocumentPartition> 



E-ROA XML Specification.doc   Page 20 

         </Document> 
       </IndexOfRecordDocument> 
       <IndexOfRecordDocument> 
         <DocumentIndexNumber>2</DocumentIndexNumber> 
        <Document id=”_23456”> 
           <DocumentTypeText>Rule 32 Notice</DocumentTypeText> 
           <DocumentSubtypeText></DocumentSubtypeText> 
           <DocumentTitleText>NOTICE OF POST CONVICTION RELIEF (PURSUANT TO RULE 32 OF THE RULES OF 
CRIMINAL PROCEDURE)</DocumentTitleText> 
           <DocumentFiledDate>2002-04-01</DocumentFiledDate> 
           <DocumentPartition> 
      <DocumentFileName>Rule32Notices.pdf</DocumentFileName> 

                 <DigestMethod algorithm=http://www.w3.org/2000/09/xmldsig#sha1 /> 
                 <DigestValue>UrXLDLBIta6skoV5/A8Q38GEw44=</DigestValue> 

      <DocumentPartitionNumber>1</DocumentPartitionNumber> 
      <DocumentContent id=”DC0002”  
                              mimeType=”application/pdf” size=”105875” 
                              xlink:href=”23456.pdf”</DocumentContent> 
           </DocumentPartition> 
         </Document> 
       </IndexOfRecordDocument> 
  </Transaction> 
 </IndexOfRecord> 

</Submission> 



E-ROA XML Specification.doc   Page 21 

Frequently Asked Questions (FAQ) 
 

1. How can I tell if a Submission is part of a group? 
 
  When a Record on Appeal or a record alteration cannot be reasonably accommodated by a single 

Submission, then multiple Submissions may be used. The groupCount attribute of the IndexOfRecord 
element should be set to the total number of Submissions in the group. If this attribute value is 
greater than one, then the Submission is part of a group, otherwise the Submission is complete.  

 
 
2. When a group of Submissions is used, how can I identify the Submissions which belong to the group? 
 
  All of the Submissions which belong to the same Submission group will have the same values for: 
 
   SubmissionCourtName 
   SubmissionCourtName code 
   CaseNumber 
   AppellateCourtName 
   AppellateCourtName code 
   AppellateCaseNumber 
   IndexOfRecord id 
 

 
3. What is a good value for the id attribute of the IndexOfRecord element? Can I just use the sending 

Court’s case number? 
 
 The id attribute on the IndexOfRecord element is a necessary component to uniquely identify a 

Submission group (see FAQ 2). However, the idea of an IndexOfRecord id may seem confusing. The 
natural response would be to ID the IOR by CaseNumber (or possibly Court and CaseNumber). This 
approach will work when a single Submission is required to transfer the record. However when 
multiple Submissions are required, use of CaseNumber will not meet the IndexOfRecord uniqueness 
constraint, necessary to permit Submission group identification.  

 
4. For a group of Submissions, how can I tell the order in which the Submission should be handled? 
 
  Each Submission within the group will have a SubmissionSeqNumber. The SubmissionSeqNumber of the 

first Submission in the group should be “1”. The SubmissionSequenceNumber of the second Submission 
within the group should be “2”, etc., until the last Submission, which should have a 
SubmissionSeqNumber equal to the IndexOfRecord groupCount. Submissions should be handled in 
ascending SubmissionSeqNumber order.  

 



E-ROA XML Specification.doc   Page 22 

 
5. When a Submission group is used, how can I identify the documents within the record which are 

transmitted within a given Submission within the Submission group? 
 
  Each Submission within the Submission group will contain an e-ROA XML document which defines the 

Submission. The IndexOfRecord element within each Submission will identify all the Documents of the 
record which are contained within the Submission.  

 
  This implies that the IndexOfRecord element for a given Submission within a Submission group will 

only list the documents that it carries (like a packing slip). 
 
 
6. When a Submission Group is used, how can I identify all the documents which comprise the complete 

Record On Appeal? 
 
  The full Record on Appeal can be identified from the IndexOfRecord DocumentContent. However, since 

this may be in human readable form, if the Transaction directive is FILE, software applications may 
prefer to identify all the documents by concatenating the IndexOfRecordDocuments for all the 
Submissions within the group. When the Transaction directive is other than FILE, then concatenating 
the IndexOfRecordDocuments will not identify all the documents which comprise the full Record On 
Appeal. This information will need to be obtained from the receiving court’s EDMS or CMS. 

 
 
7. How can I determine the number of documents that should be included within a Submission group? 
 
  A Submission group, whether it contains a single Submission or multiple Submissions can contain 

documents from three different ‘sources’ (not counting the E-ROA XML documents). These are: (1) the 
Index of Record document, (2) the Index of Record content documents (i.e. the record), and (3) 
Supplemental Item documents. 

 
  Index of Record document – there should be one and only one Index of Record document, no matter how 

many Submissions are contained within the Submission group, and no matter how many Transactions are 
contained within the Submission group. 

 
  Index of record content – the number of documents contained as part of the Index of Record content 

can be determined from the docCount attribute of the IndexOfRecord element. If there are multiple 
Submissions within the Submission group, then the IndexOfRecord docCount will need to be summed for 
all Submissions within the group. 

 
  Supplemental Items – the number of Supplemental Item documents can be determined from the docCount 

attribute of the SupplementalItems element. If there are multiple Submissions within the Submission 



E-ROA XML Specification.doc   Page 23 

group which contain SupplementalItems, then the SupplementalItems docCount will need to be summed 
for all relevant Submissions within the group. 

 
  e.g. Total Documents = 1 + IndexofRecord.docCount + SupplementalItems.docCount 

 
 
8. How can I tell if a document has been completely received and is intact? 
 

If the Document has been provided within a single DocumentPartition, then: 
 
  Normally a document will be sent in a single logical MQ message. However, if the document is large, 

it may require multiple physical MQ messages to transmit. Due to physical constraints (such as 
queue size, or buffer size, etc.), MQ may divide the logical message into multiple physical 
messages. This is called arbitrary segmentation. If MQ performs arbitrary segmentation, then the 
sending application will not even be aware of the segmentation. As such, the sending application 
would not be able to set any type of status or flag indicating segmentation. However, arbitrary 
segmentation is visible to the receiving application (i.e. MQReader). By setting 
MQGMO_ALL_MSGS_AVAILABLE, the receiving application can assure that it will not retrieve a message 
until all messages or segments within a group are available in the queue.  

 
  If a receiving application were to retrieve segments individually from the queue, then the size 

attribute on the DocumentContent element can be used to determine when the document content is 
complete.  

 
  If MQ is used, then the MD Offset field can be used to determine how much of the document content 

has been transmitted. When the segment’s Offset + OriginalLength value equals the DocumentContent 
size attribute, then the document has been fully received. Note: the OriginalLength field refers to 
the length of the original physical message, not the logical message! 

 
  If a DigestMethod and DigestValue have been provided, then the document content can be ‘hashed’ 

using the DigestMethod and the result compared to DigestValue. If they match, then the document is 
intact and unaltered. 

 
  If the document spans multiple DocumentPartitions, then each DocumentPartition will need to be 

evaluated independently (as described above for a single DocumentPartition). When all 
DocumentPartitions for the Document have been fully received, then the Document will have been 
fully received. 

 
 



E-ROA XML Specification.doc   Page 24 

9. When an excessively large document gets split into multiple MQ messages, how are all the related 
messages identified? Can a field in the MD be used for this purpose? Should there also be 
information in the XML that indicates this? 

 
  Currently there is no indicator value or flag in the XML that identifies that a document has been 

split into multiple logical messages. The receiving application could infer this by (1) observing 
that there are more logical messages that would be expected by the information contained within the 
XML, and (2) by comparing the DocumentContent size attribute value to the number of bytes read from 
the MQ payload. If the size is not accommodated by message payload, then the document must be 
continued in the next logical message (or there is an error). 

 
 
10. When an acceptance or rejection message is received by the sending court, how will they know to 

which Submission or Submission group the response message refers? 
 
  MQ documentation suggests sending the original message’s MsgId as the responding messages’ 

CorrellationId. MsgId and CorrellationId will be passed to fielders from MQReader. Applications 
should retain values until any need to reply has lapsed. For ROA transactions, the receiving 
appellate court can reject the submission. The rejection notification should identify the 
transaction being returned.Although IndexOfRecord ID could be considered for this purpose, it is 
more customary in an MQ environment to return the MsgId of the transmitted message as the 
CorrellationId of the rejection message. There may be considerable delay (i.e. hours) between 
receipt of an ROA transaction and its rejection or acceptance. If MsgId is to be returned, it must 
persist throughout this delay interval. 

 
 
11. Why was document content not included within the XML document in Base64 format as defined by 

LegalXML CourtFiling 1.1? 
   

  This approach was initially considered. However, since a record on appeal can contain many (up to 
hundreds) of documents, this would have produced an excessively large XML document (i.e. file). 
Except in the rarest of circumstances (i.e. a small record), this XML document would exceed the 
size limits of an MQ message and need to be ‘split’ across multiple messages. This would be 
needlessly complicated. Instead, it was decided that each document should be transported in its own 
individual message (when possible). 

 
12.  Since each document will be passed in MQ on separate messages, how should the XML in the first MQ 

message, reference the MQ message which contains the document content? Is it better to use unparsed 
external entities or is XLINK a better choice?  

 



E-ROA XML Specification.doc   Page 25 

 Through the use of external unparsed entities and notations, non-XML data can be ‘included’ in the 
XML document. The entity declaration identifies the location of the external content (i.e. a URL) 
and references a notation. The notation identifies the format of the external content (e.g. MIME 
type). The XML fragments below demonstrate the use of an unparsed external entity for external 
content ‘inclusion’:  

   
 <!ENTITY DOC1 SYSTEM “filename1.ext” NDATA TIFF> 
 <!NOTATION TIFF SYSTEM “image/tiff”>  
   
 <!ELEMENT DocumentContent EMPTY> 
 <!ATTLIST DocumentContent id ID #REQUIRED 
      size CDATA #IMPLIED 
      source ENTITY #REQUIRED > 
 
 
  <DocumentContent id=_12345 size=23987 source=”DOC1” /> 
 
 
 An alternative to unparsed external entities is to use XLINK. XLINK is the XML way of providing 

document references, typically for the purpose of hyper-linking. The following fragments 
demonstrate the use of XLINK: 

 
 <!ELEMENT DocumentContent EMPTY> 
 <!ATTLIST DocumentContent id ID #REQUIRED 
      size CDATA #IMPLIED 
      xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink” 
       xlink:type CDATA #FIXED “simple” 
      xlink:href CDATA #REQUIRED 
      mimeType CDATA #REQUIRED > 
 
  <!DocumentContent id=_12345 size=23987 xlink:href=”filename1.ext” mimeType=”application/tif”> 
  Pros and Cons: 
 
  Browser support is better for unparsed external entities than for XLINK. However, since the e-Appeal 

usage is for data/document transfer and not display, this is of little concern. However, there is 
interest in using XSL style sheets to present the e-ROA XML as an Index of Record document. 

 
  Overall, the XLINK approach has been selected because it appears simpler than the external unparsed 

entity approach. 
 



E-ROA XML Specification.doc   Page 26 

13. For MQ messages which contain document content, should each message contain at most a single 
document? Is there a practical limit on the size of a document that can be allowed into a single 
message? Should a single document be allowed to be split across multiple MQ messages? Should MQ 
arbitrary segmentation be permitted? 

 
  First, it should be noted that MQ supports two forms of segmentation (dividing a logical message 

into multiple physical MQ messages). ‘Arbitrary’ segmentation is when MQ divides large messages for 
transport. Arbitrary segmentation can be invisible to the applications using MQ. When the receiving 
application GETs a message an application has the option to obtain the full message PUT initially, 
or obtain each segment individually. ‘Application’ segmentation is when the sending application 
divides a ‘logical’ message into multiple parts for transport. Both arbitrary and application 
segmentation may be used together, these features are not mutually exclusive. 

 
  Secondly, it should be noted that ‘segmentation’ is different than ‘grouping’. MQ permits groups of 

messages to be established and sent. The receiving application can specify that it should not be 
notified until all messages within the group have been received (MQGMO_ALL_MSGS_AVAILABLE). 

 
  It seems reasonable to place each document into a single MQ message by itself. A single MQ message 

cannot be larger than 100MB (104,857,600 bytes) which includes the MD. This should almost always be 
large enough for a single document. By permitting MQ to perform arbitrary segmentation, it should 
not be necessary to require the application to split documents into multiple message segments. 
Applications will need to split documents that exceed the single message size limitation (i.e. 
100MB) into multiple messages. Additionally, applications must guard against exceeding the size 
limitations of a message Group (limited to approximately 1 GB). When the space remaining in a 
message Group is smaller than the size of the next Document to send, then the Submission must be 
terminated, and the next Submission within the Submission group begun. 

 
 
14. Some elements such as DocumentAbstractText, DocumentCommentText, DocumentSealedIndicator, 

DigestMethod, and DigestValue are optional. Why are optional elements included? When left blank 
(i.e., no value provided) do empty tags need to be included in the XML? 

 
  Due to the varying case and document management systems used throughout the state, flexibility is 

essential. This Information Exchange Package (IEP) has not only been designed to accommodate state 
standard systems such as OnBase, AZTEC, and Appellamation, but also various other case and document 
management systems in use throughout the state. Different systems, and different implementations of 
systems, support different capabilities. For example, many document management systems support not 
only Document Titles, but also Document Abstracts. When Abstract information is available, there 
should be a way to send it to a receiving system which may also benefit from the available 
information. The element is optional so that more limited EDMS’s which do not support Document 



E-ROA XML Specification.doc   Page 27 

Abstract information, are not required to send it. The inclusion of optional elements is consistent 
with the LegalXML philosophy of “inclusive and optional.” 

 
  Optional elements which have no values are not required to be included in the XML. The ‘?’ in the 

DTD (as in: <!ELEMENT Document (DocumentTypeText, DocumentSubtypeText?, DocumentTitleText, 
DocumentFiledDate, DocumentAbstractText?, DocumentCommentText?, DocumentSealedIndicator?)> ) 
specifies that the element is optional, and should occur once or not at all. For example, the 
following XML fragments are valid, based on the DTD fragment above: 

 
   <Document id=”_134529”> 
    <DocumentTypeText>Notice of Appeal</DocumentTypeText> 
    <DocumentTitleText>Motion to Appeal</DocumentTitleText> 
    <DocumentFileDate>2004-05-23</DocumentFiledDate> 
   </Document> 
 
   <Document id=”_1708”> 
    <DocumentTypeText>Letter</DocumentTypeText> 
    <DocumentTitleText>Austin, Gary - Letter of 10 Sept 1997</DocumentTitleText> 
    <DocumentAbstractText>Requesting Info on SA - See Rules on SA</DocumentAbstractText> 
    <DocumentFileDate>1997-09-12</DocumentFiledDate> 
   </Document> 
 
   <Document id=”_145705”> 
    <DocumentTypeText>Petition</DocumentTypeText> 
    <DocumentTitleText>Petition for Allowance and Payment of Claim</DocumentTitleText> 
    <DocumentAbstractText></DocumentAbstractText> 
    <DocumentFileDate>2005-12-22</DocumentFiledDate> 
    <DocumentSealedIndicator>Yes</DocumentSealedIndicator> 
   </Document> 
 
   
 
 

 



E-ROA XML Specification.doc   Page 28 

 
Issues: 

 
 

1. How should the DocumentContent URI be defined? 
 

A Uniform Resource Identifier (URI) is a compact string of characters for identifying an abstract or 
physical resource. A URI can be further classified as a locator (URL), a name (URN), or both.  
 
For the purpose of this E-ROA XML, we want to use a locator type (URL) that will identify the actual 
location of the external document content.  
 
If the XML is to be ‘valid’ at all points within its lifecycle, then this URL will need to be 
revised as the message is first created, then transmitted, then received. When first created by an 
Assembler, or after receipt by an MQReader, the URL would point to a file which contained the 
document content. If the file is located in the same directory as the XML document, then a relative 
URL should be used. When being transported using MQSeries, the document content will exist in an MQ 
message, and the URL should identify the message. This task is further complicated by the 
possibility of multiple Submissions (i.e. a Submission group) being required to transport the 
complete ROA. 

 
  How important is it for the state of the XML to be always valid?  

 
 

2. Is support for Volumes required? 
 

Currently, with paper records, the trial court will sometimes bind up multiple documents within the 
record into bound volumes. This is presumably done to facilitate handling and indexing of these 
records. Although this seems unnecessary with electronic documents, will courts continue to define 
volumes? Would an optional volumeNumber attribute on the Document element suffice? 
 
It is currently understood that Volume support is not necessary. 

 
 

3. Should MQ Server binding or MQ Client binding be used? 
 

When using Server binding mode, WebSphere MQ classes use the queue manager API, rather than 
communicating through a network. This provides better performance for WebSphere MQ applications than 
using network connections. 

 



E-ROA XML Specification.doc   Page 29 

 The MQ Queue Manager’s Begin method for .NET is only available in Server Binding mode.  

 In the ‘MQSeries Version 5 Programming Examples’ (SG24-5214) it advises that for persistent 
messages, the queue manager can reassemble segments only within a unit of work.  

 Is the Begin method required to start a unit of work? 

 It appears that a Begin method is only required to start a Global Unit of work, but not a Local unit 
of work (see MQSeries Application Programming Guide SC33-0807-12, page 183). 

 

4. Should the MQReader wait for an affirmation from a Fielder before causing messages to be deleted 
from a queue (by committing; MQCMIT)?  If messages are deleted from the MQ queue before being 
committed by the Fielder, how can they be recovered?  Should two phased commit be used?  Should 
MQReader be an ‘external synch point coordinator’? 

 
These issues are being addressed by the MQReader expansion team. The interface between MQReader and 
Fielders specifies that when processing an MQ Group, MQReader will not commit until the whole group 
has been read, passed to the Fielder, and the Fielder signals to MQReader that it is okay to commit. 
If the Fielder signals MQReader that there is a problem, the Fielder will indicate the problem 
severity. If the problem is correctable, then MQReader may rollback, leaving the message group in 
the queue for correction and subsequent processing. More likely however, is that the problem cannot 
be easily corrected and the errant message must be removed from the queue and placed into a holding 
area for resolution. 

 
 

5. Should a Document be permitted to have multiple DocumentTypeText elements? 
 

Many documents cannot be fully described by a single document type classification, and many Document 
Management Systems support multiple document type assignments for a single document.  

 
 
6. The E-ROA XML specification supports a DocumentSealedIndicator. Is this enough? Is there a need to 

indicate that a document is ‘Confidential’ but not ‘Sealed’? If so, what is the difference? 
 

Sometimes the ‘rules’ contain language that suggests that there is a difference between ‘sealed’ 
document and a ‘confidential’ document. For example, from the Code of Judicial Administration 1-506 
E 4: 
 
“Filing of confidential and sealed documents. Courts shall not accept electronically filed 
confidential and sealed documents.” 



E-ROA XML Specification.doc   Page 30 

 
  Even though the electronic transfer of the record is a form of electronic filing (court to court e-

filing), is it correct to interpret that the above constraint does not apply to the e-filing of the 
record? 

 
 
7. Reserved for future issues. 
 

 


